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Common Sequence Polymorphisms
Shaping Genetic Diversity in
Arabidopsis thaliana
Richard M. Clark,1 Gabriele Schweikert,1,2,3* Christopher Toomajian,4* Stephan Ossowski,1*
Georg Zeller,1,2,5* Paul Shinn,6 Norman Warthmann,1 Tina T. Hu,4 Glenn Fu,7 David A. Hinds,7
Huaming Chen,6 Kelly A. Frazer,7 Daniel H. Huson,5 Bernhard Schölkopf,3 Magnus Nordborg,4
Gunnar Rätsch,2 Joseph R. Ecker,6,8 Detlef Weigel1,8†

The genomes of individuals from the same species vary in sequence as a result of different evolutionary
processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis
thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than
1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false
discovery rates (FDRs), and ~4% of the genome was identified as being highly dissimilar or deleted
relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among
gene families, with genes mediating interaction with the biotic environment having exceptional
polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily
apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable
example in which almost all variation was removed in a 500-kilobase window. Analyzing the
polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces
shaping population-wide sequence variation in A. thaliana.

Comprehensive polymorphism data are essen-
tial for the systematic identification of se-
quence variants affecting phenotypes (1).

Despite progress with new technologies, direct re-
sequencing of individual genomes is not yet cost
effective for most organisms (2). High-density oligo-
nucleotide arrays provide an alternative approach for
polymorphism detection and have been used to iden-
tify a large fraction of the SNPvariation in the human
and the mouse (3, 4). We applied this technology to
20 wild accessions of A. thaliana, for which a
genome sequence from a single accession was gen-
erated in the year 2000 (5). The resulting polymor-
phism data set captures much of the common
sequence variation in theworldwideA. thaliana pop-
ulation. We used this information to systematically
determine the types of sequences andgenes that differ
between accessions and to provide a high-resolution
description of the genome-wide distribution of poly-
morphisms in this multicellular reference organism.

Sample selection, array design, and poly-
morphism detection. For polymorphism discov-
ery, we selected accessions with maximal genetic

diversity (6, 7). In addition, we chose several
commonly used strains, such as Ler-1 (table S1).
Col-0, the reference accession, was included as a
control. For 19 of the 20 accessions (7), 1213
fragments of ~500 base pairs (bp) in length, which
were spaced throughout the genome, had previous-
ly been sampled by dideoxy sequencing; between
2266 and 3949 nucleotide substitutions per acces-
sion relative to Col-0 had been identified (6). This
data set, called “2010,” allowed us to assess the
quality of our polymorphism predictions.

Whole-genome amplified DNA from each
accession was hybridized to resequencing mi-
croarrays interrogating >99.99% of bases in the
119-Mb reference genome sequence (7). Each po-
sition was queried with forward- and reverse-strand
probe quartets consisting of oligonucleotides of
length 25 (fig. S1). Within a probe quartet, all four
nucleotides were represented at the central posi-
tion, and differences in relative intensities across
probe quartets indicated potential SNPs. For tight-
ly linked SNPs, however, all probes harbor at least
one mismatch, hybridization is suppressed, and
SNP detection is confounded (fig. S1).

We used two computational methods to detect
SNPs at 105,920,272 positions that were not highly
repetitive (7) (table S2 and fig. S2). In A. thaliana,
the sequence composition (i.e., GC content) and
low polymorphism levels typical for coding
sequences are favorable for hybridization-based
SNP detection (7). Accordingly, recovery of SNPs
with a model-based (MB) algorithm (3, 4) was
higher for coding than for noncoding regions (36
versus 15%) at a corresponding FDR that was
only one-third as high (Fig. 1A). An average of
96,814 SNPs were identified per accession by the
MB method, for a total of 456,956 nonredundant
SNPs (Fig. 1B and table S3).

We also developed a machine learning (ML)
method with support vector machines (8, 9) for
SNP identification (7) (figs. S3 to S8). The training
step exploited the 2010 data, and as input we used
information for all oligonucleotide probes corre-
sponding to positions within a 9-bp window cen-
tered on candidate polymorphisms (7). In addition
to hybridization data, we included as inputs se-
quence characteristics and genome-wide repetitive-
ness of probes (tables S5 and S6). TheMLmethod
assigns a probability to each prediction, and we
generated 440,657 to 1,074,055 nonredundant SNP
predictions over a corresponding range of FDRs
from 2 to 10% (7, 10). Performance of the ML
method was inferior to the MB method for cod-
ing sequences but superior for noncoding se-
quences (Fig. 1, A and B, and table S3).

When the FDR for the ML method was at 2%,
the FDR and recovery for theML andMBmethods
were similar; however, the two methods were
complementary, with 60% of predictionsmadewith
only one of the methods (Fig. 1C). This resulted, in
part, from differing performance in polymor-
phic regions (Fig. 1D). Recall for SNPs more than
~30 bp from another SNP or insertion or deletion
(indel) was higher for the MB method, whereas
recall for SNPs separated by 7 to 30 bp from a
nearby polymorphism was about two times as
high for the ML method. For very closely linked
SNPs (<7 bp), recoverywas lowwith bothmethods
(~3%). FDRs for both methods peaked in regions
of low hybridization quality (Fig. 1E), an effect of
sequence divergence but also of other factors (7).

For subsequent analyses, we combined all
MB predictions with ML predictions supported
at a 2% FDR. The resulting data set, “MBML2,”
consisted of 648,570 nonredundant SNPs (7, 10)
(Fig. 2), an average of one polymorphic site per
166 nonrepetitive positions in the genome. With-
in MBML2, SNPs supported by both methods
have a very low FDR of ~0.2%, whereas SNPs
supported by only one method have correspond-
ingly higher FDRs (Table 1 and table S3). A
caveat for our error estimates is that 2010 data,
which we used for specificity and sensitivity as-
sessment of the two prediction methods, are un-
derrepresented for noncoding sequences, repeats,
and sequences not similar to the reference (6, 7).

Apart from SNPs, deletions or sequences highly
dissimilar to the reference are detectable on high-
density arrays as regions of reduced hybridization
(11) (fig. S1). We developed a heuristic algorithm to
identify tracts of reduced hybridization extending
over more than ~200 bp (7) (figs. S9 and S10). The
median length of 13,470 polymorphic region pre-
dictions (PRPs) generated across all accessions with
this algorithm was 589 bp; the longest was 41.2 kb
(10). In the 2010 data set, which was ascertained by
polymerase chain reaction (PCR),missing data corre-
spond in part to highly polymorphic or deleted
regions. Consistent with high specificity for PRPs, a
162-fold overrepresentation was observed between
PRPs and absent data in 2010. We also attempted
validation of 382 PRPs by PCR and sequencing, ob-
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tained complete or partial sequence data for 171 pro-
ducts, and identified 124 deletions ranging from
50 bp to more than 10 kb. In all other cases, PRPs
corresponded to clusters ofSNPsor small indels (table
S11). Many deletions or clusters of polymorphisms
extended beyond PRP boundaries, potentially con-
tributing to the high failure rate for validation at-
tempts (~55%).Where sequencedatawere available,
98.6% of bases in PRPs were either deleted or
within 6 bp of a SNP or indel polymorphism (7).
Nearly 4.1%of the reference genome sequencewas
included in PRPs, with transposon and pseudogene
sequences overrepresented 3.5-fold (Fig. 2).

To complement polymorphism predictions,
we developed a base-calling algorithm to identify
positions identical to the reference at low FDRs
(7). Between 80.3 and 92.3% of coding positions
and between 39.7 and 61.2% of intergenic posi-

tions were predicted to be the same as the ref-
erence in the different accessions (table S8). We
combined these reference base calls withMBML2
to generate pseudochromosome sequences for
each of the 20 accessions (10).

Effects of polymorphisms on genes. To
characterize genome evolution in A. thaliana, we
assessed effects of the nonredundant MBML2
SNPs on the 26,541 annotated protein-coding genes
(12). In addition to SNPs resulting in 109,979 amino
acid changes, we identified many SNPs with large
effects on gene integrity. In this class, 1227 introduce
premature stop codons, 156 alter initiation methio-
nine residues, and 435 lead to nonfunctional splice
donor or acceptor sites (10) (table S9). Also, 198
SNPs remove annotated stop codons, resulting in
longer open reading frames. Given that large-effect
SNPs are expected to be uncommon in the genome

relative to all SNPs, FDRs for this SNP subclass
might differ from that for MBML2 as a whole. To
rule out the possibility that large-effect SNPs resulted
predominantly from false SNP calls, we assayed 701
of these predictions directly (table S9). Dideoxy-
sequencing validated 650 SNPs, including 413
resulting in premature stop codons (table S10). At
7.3%, the FDR for large-effect SNPs is moderately
higher than for an average SNP in MBML2 (7). In
total, 1614genes harbor at least one large-effect SNP.
In addition, the coding regions of 1191 genes are at
least partially included in PRPs; that is, they are
highly polymorphic or deleted. The overlap between
the two classes is greater than expected by chance
(c2 = 186.1, df = 2,P<10−20). Together, large-effect
SNPs and PRPs, hereafter referred to simply as
“major-effect changes,” affected 2495, or 9.4%,
of A. thaliana protein-coding genes.

The number of genes harboring major-effect
changes varies significantly according to annotation
support (c2 = 239.2, df = 2, P < 10−20), duplication
status (c2 = 256.4, df = 2, P < 10−20), and gene
family (c2 = 311.6, df = 12, P < 10−20) (Fig. 3A).
Correction for gene size and repetitive content does
not appreciably change the observed patterns (fig.
S11). By annotation, genes known to be expressed
but lacking functional support or high homology
(“Expressed unknown”), as well as genes without
expression support (“Not expressed”), are over-
represented. In addition, of 836 A. thaliana genes
that either lack or have only moderate similarity0.01 0.03 0.05 0.07 0.09
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Fig. 1. Comparison of SNP detection methods. (A) FDR-dependent recovery of 48,700 known SNPs in 2010
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2010, this group was combined with intron sequences. (B) FDR-dependent recovery across the entire genome
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to genes in Populus trichocarpa (7), the closest
sequenced genome to A. thaliana (13), 26.0%
harbor major-effect changes, compared with

8.9% of all other genes. Poor gene annotation
likely contributes to this effect, but rapid gene
evolution may also play a part.

Consistent with relaxed purifying selection fol-
lowing recent gene duplication (14), tandem du-
plicates are 3.4- and 1.7-fold overrepresented for
major-effect changes relative to segmentally dupli-
cated andnonduplicated genes, respectively (Fig. 3A).
Segmentally duplicated genes in A. thaliana resulted
from ancient genome-wide duplications (5, 15); these
genes harbor relatively few major-effect changes,
which is consistent with earlier work suggesting that
duplicates persisting over long evolutionary time
frames are under strong purifying selection (13, 14).

Analysis of individual gene families provided
additional insights. Families involved in basic
biological processes (such as ribosomal function),
as well as families involved in transcriptional reg-
ulation [such as MYB and basic helix-loop-helix
(bHLH) transcription factors], harbor relatively few
major-effect changes (Fig. 3A). In contrast, nearly
60% of nucleotide-binding leucine-rich repeat (NB-
LRR) genes (7) and 15% of receptor-like kinase
(RLK) genes harbor at least one major-effect
change. The only function assigned to members of
the NB-LRR gene family is in strain-specific
resistance to pathogens (16), and receptors of this
class can be exceedingly variable, as presence and
absence polymorphisms are common in A. thaliana
and other plants (17–19). Our data indicate that this
extends to the majority of NB-LRR genes in the A.
thaliana genome. Although they have diverse
functions (20), RLK genes have also been impli-
cated in race-specific pathogen defense (21). Thus,
the finding that RLK genes are overrepresented for
major-effect changes raises the possibility that this
is, similar to NB-LRR genes, a consequence of
fitness trade-offs between pathogen defense and
growth (22).

We found major-effect changes in 143 mem-
bers of the F-box superfamily, which comprises
more than 660 genes in A. thaliana (23) (Fig. 3A).
This finding, in combination with other data
(13, 24), shows that F-box genes have undergone
rapid birth and death in the A. thaliana genome.
Although F-box genes have been proposed to
evolve quickly in response to pathogen pressure
(24), experimental support for this hypothesis is
lacking. The polymorphismswe describe provide
a resource for ascribing biological roles to members
of this large, yet not well-characterized, gene family.

Signatures of selection by SNP type and gene
family. To assess the extent to which the variation
we observed has been shaped by selection, we
examined allele frequency distributions for different
classes of polymorphisms. Consistent with general
expectations for selective constraints in coding
sequences, there is a skew toward low-frequency
variants at nonsynonymous relative to synonymous
sites (6) (Fig. 3B). This skew is most notable for
SNPs that introduce premature stop codons and less
extreme for other large-effect SNPs. The tendency
of SNPs causing premature stops to be rare suggests
that, at least under natural settings, these changes
are often associated with fitness costs.

Although allele frequency distributions across
gene families are broadly similar, NB-LRR genes
are an exception (Fig. 3B and fig. S12). Here,

Table 1. SNPs identified per accession in MBML2 with FDR and recovery assessed against 2010.

Mean no. SNPs per accession by method [Mean FDR (%): Mean recovery (%)]

SNP type Total MB only MB ∩ ML ML only

Coding 53,700 [2.0: 48.0] 11,379 [3.2: 11.3] 27,833 [0.1: 24.6] 14,488 [4.8: 12.1]
Intron+UTR 29,395 [3.1: 20.5] 5,762 [9.6: 4.3] 11,652 [0.4: 8.8] 11,981 [2.6: 7.5]
Intergenic 60,478 [3.5: 24.4] 22,395 [7.3: 7.7] 17,976 [0.3: 10.2] 20,107 [3.6: 6.5]
All 143,572 [2.8: 27.7] 39,536 [6.5: 7.0] 57,461 [0.2: 13.7] 46,575 [3.7: 7.8]
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both nonsynonymous and synonymous variants
are strongly skewed toward high frequency com-
pared with the genome average (Fig. 3B). This
shift is a hallmark of some type of balancing
selection (perhaps in the form of regional adap-
tation), and agrees with earlier work, on the basis
of fewer familymembers, that suggested thismode
of selection to be not uncommon for NB-LRR
genes in A. thaliana (17, 19, 22). An additional
prediction of balancing selection is a higher-than-
average level of polymorphism because of the
maintenance of relatively ancient, highly diverged
alleles. Consistent with this expectation,more than
50% of NB-LRR genes are at least partially in-
cluded in PRPs (Fig. 3A),many ofwhich correspond
to highly dissimilar sequences. Although less
extreme, a similar allele frequency skew and
high number of PRPs were observed for RLK
genes (Fig. 3A and fig. S12). Although F-box
genes harbor the second-highest occurrence of
major-effect changes, allele frequency distri-
butions are similar to the average (Fig. 3B).

Genome-wide patterns of polymorphism.
Turning to broader patterns of variation, we found a
markedly nonrandomdistribution of polymorphism
levels across the genome (Fig. 4). Regions of high
polymorphism extend from the centromeres to
beyond the pericentromeric regions. Similarly,
clusters of NB-LRR genes (7, 25) are associated

with high levels of polymorphism (e.g., between 21
and 25 Mb on chromosome 1).

It is difficult to determine the reasons for these
patterns. Given that they are evident for both
synonymous and intergenic polymorphism, di-
rect selection on the polymorphic sites seems un-
likely, although selection on linked sites may
either increase or decrease variation (6).Mutation
rates may also differ between chromosomal
regions because of differences in base compo-
sition. Finally, there are almost certainly biases in
the array-based resequencing—e.g., due to
regional differences in repeat content (7).

We believe that all three explanations contribute
to the observed patterns. In amultiple regression, the
estimated polymorphism levels are significantly
correlated with several variables, including repeat
density, GC content, fraction of missing data, dis-
tance from the centromere, and density of NB-LRR
genes (table S12). The patterns are, however, not
simply an artifact of the resequencing technology;
they are also evident in resequencing data obtained
with other techniques (6, 26) (fig. S13). For the re-
gions around NB-LRR gene clusters, polymorphism
was elevated even when the NB-LRR genes them-
selves were excluded (fig. S14), and polymorphism
was also elevated in intergenic DNA. Pervasive ba-
lancing selection acting on these genes, as suggested
by the results in Fig. 3B and other studies (17), is a

likely explanation. Balancing selection can increase
coalescence times for regions linked to selectively
maintained polymorphisms (27), a phenomenon
that should be more easily detected in selfing
organisms (28) and that has been reported for
A. thaliana (22, 29, 30). Clusters of tightly linked
genes subject to balancing selection, such asNB-LRR
genes (25) (Fig. 4), may give rise to regions of high
polymorphism similar to what has been observed
for the vertebrate major histocompatibility complex
genes (31, 32). The forthcoming A. lyrata genome
sequence (33) will be instrumental in analyzing these
data further, because it will allow divergence to be
estimated between these two closely related species.
This will be essential for determining the relative im-
portance of selection versusmutation-rate variation.

In contrast, regions of low polymorphism might
reflect recent positive selection, or “selective sweeps”
(34, 35) characterized by extensive haplotype
sharing. A study with 2010 data found strong
evidence for two separate partial sweeps involving
inactivation ofFRI, amajor determinant of flowering
time in natural populations of A. thaliana (36). The

Fig. 4. Genome-wide
pattern of nucleotide di-
versity. Average pairwise
nucleotide diversity is
plotted for both fourfold
degenerate synonymous
and intergenic sites along
each chromosome with
sliding windows of 250
kb (counted from all sites)
with an offset of 100 kb
(7). GC content in each
window was calculated
from sites called in the
Col-0 sample and has
been rescaled so 35% is
at the bottom of each plot
and 47.5% is at the top.
The broad peaks of repet-
itive probe density on each
chromosome correspond
to the centromeric and
pericentromeric regions.
Repeat content has been
rescaled so 100% is at the
top of each plot and 0% is
at the bottom. Levels of
polymorphism for both
fourfold degenerate and
intergenic sites are signifi-
cantly negatively corre-
lated with the distance to
the centromere and posi-
tively correlated with the
number of NB-LRR genes in nonoverlapping 50-kb windows (table S12). Polymorphism is reduced at intergenic
relative to synonymous sites, which is partly due to lower recovery of SNPs in intergenic regions (e.g., Fig. 1A).
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Fig. 5. Regions of extensive pairwise haplotype
sharing along chromosome 1. Accession pairs are
sorted along the y axis. Horizontal red lines
demarcate comparisons using one accession. Each
possible pairwise comparison is shown only once.
Black lines indicate regions of very high similarity
between a pair of accessions. The region between
20 and 21Mb exhibits extensive haplotype sharing
over nearly 500 kb in all but two accessions, Cvi-0
and Lov-5, which are shown at the bottom.
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current data set confirmed extensive haplotype
sharing of up to 600 kb around FRI (fig. S15), as
well as haplotype sharing around other low-
frequency candidate alleles (36) (fig. S16).

We looked for evidence of additional sweeps in
the form of extensive haplotype sharing across at
least 50 kb (Fig. 5 and figs. S17 to S19). Because of
its composition and size, our sample is only suited
for discovering species-wide sweeps. We did not
find evidence of a recent sweep affecting all
accessions. However, on chromosome 1 all but
two accessions were nearly identical for approxi-
mately 500 kb (Fig. 5). The two unaffected
accessions, Cvi-0 and Lov-5, are from the periphery
of the A. thaliana range and may have escaped the
sweep because of different selective environments
or geographic isolation. The region of most extreme
haplotype sharing extends from 20.34 to 20.49 Mb
and contains 50 annotated genes (table S13). There
are several additional candidates for sweeps
affecting a smaller number of accessions (figs. S17
to S20).With the SNPs identified in this project and
the ability to determine their frequencies in hundreds
to thousands of accessions (37), the goal of
understanding the forces shaping diversity at global,
regional, and local scales will soon be within reach.

Conclusions. We used array-based methods to
generate a comprehensive polymorphism resource
forA. thaliana.OurSNPdata set is highly applicable
for linkage disequilibrium mapping studies. In
addition, we identified hundreds of thousands of
polymorphisms in both coding and noncoding re-
gions, providing an important resource for both evo-
lutionary genetic and functional studies. Recently,
studies in plants with large, repetitive genomes, like
maize (genome size ~2.5 Gb), have shown that as
much as 50% of sequences can differ between
strains (38). In contrast to these plants, A. thaliana
has a compact genome consisting largely of unique
sequences. Nevertheless, our data highlight that even
for species with streamlined genomes, individuals
can differ substantially in genic content.

Mutations identified in laboratory phenotypic
screens typically havemarked phenotypic effects that
are likely detrimental in the wild. The genes seg-
regating for major-effect changes in our population
have few knownmutant phenotypes (tables S10 and
S11), but nonetheless, allele frequency patterns sug-
gest functional constraints under natural conditions.
Variation in copy number for genic sequences may
explain this observation; in a given accession, higher
constraint may be observed if a paralog is absent.
Nevertheless, as highlighted by the current study,
many genes harboring major-effect changes in wild
populations are likely tomediate interactionswith the
environment. Ultimately, experiments under more
natural conditions will be required to fully appreciate
the functional relevance of such sequence variation.
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Imaging the Surface of Altair
John D. Monnier,1* M. Zhao,1 E. Pedretti,2 N. Thureau,3 M. Ireland,4 P. Muirhead,5
J.-P. Berger,6 R. Millan-Gabet,7 G. Van Belle,7 T. ten Brummelaar,8 H. McAlister,8
S. Ridgway,9 N. Turner,8 L. Sturmann,8 J. Sturmann,8 D. Berger1

Spatially resolving the surfaces of nearby stars promises to advance our knowledge of stellar
physics. Using optical long-baseline interferometry, we constructed a near-infrared image of the
rapidly rotating hot star Altair with a resolution of <1 milliarcsecond. The image clearly reveals the
strong effect of gravity darkening on the highly distorted stellar photosphere. Standard models for
a uniformly rotating star cannot explain our findings, which appear to result from differential
rotation, alternative gravity-darkening laws, or both.

Whereas solar astronomers can take
advantage of high-resolution, multi-
wavelength, real-time imaging of the

Sun’s surface, stellar astronomers know most
stars—whether located parsecs or kiloparsecs

away—as simple points of light. To discover
and understand the processes around stars unlike
the Sun, we must rely on stellar spectra aver-
aged over the entire photosphere. Despite their
enormous value, spectra alone have been in-

adequate to resolve central questions in stellar
astronomy, such as the role of angular mo-
mentum in stellar evolution (1), the produc-
tion and maintenance of magnetic fields (2),
the launching of massive stellar winds (3), and
the interactions between very close binary com-
panions (4).

Fortunately, solar astronomers no longer
hold a monopoly on stellar imaging. Long-
baseline visible and infrared interferometers have
enabled the cataloging of photospheric diameters
of hundreds of stars and high-precision dynam-
ical masses for dozens of binaries, offering exact-
ing constraints for theories of stellar evolution
and stellar atmospheres (5). This work requires
an angular resolution of ~1 milliarcsecond (mas)
(1 part in 2 × 108, or 5 nanoradians) for resolving
even nearby stars, which is more than an order of
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